Здоровье, отношения, дом и быт. Портал о самом интересном

Открытия менделя. Тема: хромосомная теория наследственности С чем мендель проводил опыты

Кратко описывающую основные этапы «разоблачения» опытов Грегора Иоганна Менделя. Имя этого ученого присутствует во всех школьных учебниках биологии, так же как и иллюстрации его опытов по разведению гороха. Мендель по праву считается первооткрывателем законов наследственности, которые стали первым шагом на пути к современной генетике.

Схема наследования признаков, выведенная Менделем

Учебник «Общая биология»

Масштабный эксперимент, проведенный интересовавшимся естественными науками монахом-августинцем, длился с 1856 по 1863 год. За эти несколько лет Мендель отобрал 22 сорта гороха, которые четко отличались между собой по определенным признакам. После этого исследователь приступил к опытам по так называемому моногибридному скрещиванию: Мендель скрещивал сорта, которые отличались друг от друга только цветом семян (одни были желтые, другие — зеленые).

Выяснилось, что

при первом скрещивании семена зеленого цвета «исчезают» — это правило получило название «закон единообразия гибридов первого поколения». Зато во втором поколении зеленые семена появляются снова, причем в соотношении 3:1.

(Мендель получил 6022 желтых семени и 2001 зеленое.) Исследователь назвал «победивший» признак доминантным, а «проигравший» — рецессивным, а выявленная закономерность стала известна как «закон расщепления».

Это правило означает, что 75% гибридов второго поколения будут обладать внешними доминантными признаками, а 25% — рецессивными. Что касается генотипа, то здесь соотношение будет следующим: 25% растений будут наследовать доминантный признак и от отца, и от матери, гены 50% будут нести в себе оба признака (проявится при этом доминантный — желтые горошины), а оставшиеся 25% окажутся полностью рецессивными.

Третий закон Менделя — закон независимого комбинирования — был выведен исследователем в ходе скрещивания растений, которые отличались друг от друга несколькими признаками. В случае с горохом это был цвет горошин (желтый и зеленый) и их поверхность (гладкая или морщинистая). Доминантными признаками были желтый цвет и гладкая поверхность, рецессивными — зеленая окраска и морщинистая поверхность. Грегор Мендель выяснил, что между собой эти признаки будут комбинироваться независимо друг от друга. При этом легко подсчитать, что по фенотипу — внешним признакам — потомство будет делиться на четыре группы: 9 желтых гладких, 3 желтых морщинистых, 3 зеленых гладких и 1 зеленая морщинистая горошина.

Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1.

В 1866 году результаты работы Грегора Менделя были опубликованы в очередном томе «Трудов Общества естествоиспытателей» под названием «Опыты над растительными гибридами», но у современников его работа интереса не вызвала. В 1936 году генетик-теоретик и статистик из Кембриджского университета Рональд Фишер заявил, что полученные Менделем результаты «слишком хороши, чтобы быть правдой». Однако обвинять исследователя в подтасовке фактов начал не он — судя по всему, первым это сделал Уолтер Уэлдон, биолог из Оксфордского университета. В октябре 1900 года, спустя несколько месяцев после возобновления интереса к работам Менделя, ученый написал в личном послании своему коллеге, математику Карлу Пирсону, что он наткнулся на исследование «некоего Менделя», который занимался скрещиванием гороха. На протяжении последующего года Уэлдон исследовал работу монаха и все более убеждался в том, что полученные Менделем пропорции не были бы такими «чистыми» при использовании реально существующих в природе — а не искусственно выведенных — сортов гороха.

Кроме того, биолога смутило и то, что Мендель оперировал бинарными категориями: желтый — зеленый, гладкий — морщинистый. По мнению Уэлдона, такое четкое разделение признаков весьма далеко от реальности: так, к какой категории исследователь относил семена желто-зеленого, неопределенного цвета?

Скорее всего, классифицировались они так, чтобы вписаться в предложенную модель, утверждал биолог, которому приводимые Менделем цифры — 5474 горошины с доминантным признаком из 7324 выращенных семян (то есть 74,7%, тогда как теоретически их должно было оказаться 75%) — показались слишком «хорошими». «Он либо лжец, либо волшебник», — так писал Уэлдон в письме Пирсону в 1901 году.

Иллюстрация из статьи Уэлдона 1902 года. Изображения наглядно демонстрируют, что не все семена можно классифицировать как «желтые», «зеленые», «гладкие» или «морщинистые»

Science. W. F. R. Weldon, 1902.

Впрочем, некоторые из тех, кто нашел результаты Менделя неправдоподобно хорошими, все же решили выступить в его защиту — одним из таких ученых стал и Рональд Фишер. Он заявил, что теоретическая модель наследования признаков должна была родиться непосредственно после начала экспериментов — а разработать ее мог только действительно выдающийся ум. Тщательно подготовленной иллюстрацией теории опыты, по мнению Фишера, стали позже, причем «подтасовывать» результаты разведения гороха мог не сам ученый, а ухаживавшие за растениями садовники, которые были знакомы с теоретическими выкладками исследователя.

К середине ХХ века дебаты вокруг вопроса о соблюдении Менделем научной этики несколько утихли — связано это было с тем, что генетика в то время находилась под сильным влиянием политических факторов, в частности, засилья «лысенковщины» в Советском Союзе.

В этих условиях западные ученые предпочитали не высказывать вслух сомнений в достоверности опытов Менделя, и тема была забыта, однако, по всей видимости, лишь на время.

Авторы статьи в Science еще раз утверждают, что приводимые им цифры слишком хороши, чтобы быть правдой, классификация признаков лишь по двум категориям не оправданна, а также соглашаются с тем, что монах мог считать желтые горошины как зеленые, если это лучше вписывалось в теорию. Тем не менее заслуги ученого это не умаляет: сформулированные им законы действительно работают, а их открытие стало первой ступенью развития современной генетики.

Основоположником науки о наследственности - генетики по праву считается австро-венгерский ученый Грегор Мендель. Работа исследователя, "переоткрытая" только в 1900 году, принесла посмертную славу Менделю и послужила началом новой науки, которую несколько позже назвали генетикой. До конца семидесятых годов XX века генетика в основном двигалась по пути, проложенному Менделем, и только когда учёные научились читать последовательность нуклеиновых оснований в молекулах ДНК, наследственность стали изучать не с помощью анализа результатов гибридизации, а опираясь на физико-химические методы.

Грегор Иоганн Мендель родился в Гейзендорфе, что в Силезии, 22 июля 1822 года в семье крестьянина. В начальной школе он обнаружил выдающиеся математические способности и по настоянию учителей продолжил образование в гимназии небольшого, находящегося поблизости городка Опава. Однако на дальнейшее обучение Менделя денег в семье недоставало. С большим трудом их удалось наскрести на завершение гимназического курса. Выручила младшая сестра Тереза: она пожертвовала скопленным для нее приданым. На эти средства Мендель смог проучиться еще некоторое время на курсах по подготовке в университет. После этого средства семьи иссякли окончательно.

Выход предложил профессор математики Франц. Он посоветовал Менделю вступить в августинский монастырь города Брно. Его возглавлял в то время аббат Кирилл Напп - человек широких взглядов, поощрявший занятия наукой. В 1843 году Мендель поступил в этот монастырь и получил имя Грегор (при рождении ему было дано имя Иоганн). Через четыре года монастырь направил двадцатипятилетнего монаха Менделя учителем в среднюю школу. Затем с 1851 по 1853 год он изучал естественные науки, особенно физику, в Венском университете, после чего стал преподавателем физики и естествознания в реальном училище города Брно.

Его педагогическую деятельность, продолжавшуюся четырнадцать лет, высоко ценили и руководство училища, и ученики. По воспоминаниям последних, он считался одним из любимейших учителей. Последние пятнадцать лет жизни Мендель был настоятелем монастыря.

С юности Грегор интересовался естествознанием. Будучи скорее любителем, чем профессиональным учёным-биологом, Мендель постоянно экспериментировал с различными растениями и пчёлами. В 1856 году он начал классическую работу по гибридизации и анализу наследования признаков у гороха. Мендель трудился в крохотном, менее двух с половиною соток гектара, монастырском садике. Он высевал горох на протяжении восьми лет, манипулируя двумя десятками разновидностей этого растения, различных по окраске цветков и по виду семян. Он проделал десять тысяч опытов. Своим усердием и терпением он приводил в немалое изумление помогавших ему в нужных случаях партнеров - Винкельмейера и Лиленталя, а также садовника Мареша, весьма склонного к выпивке. Если Мендель и давал пояснения своим помощникам, то вряд ли они могли его понять.

Неторопливо текла жизнь в монастыре Святого Томаша. Нетороплив был и Грегор Мендель. Настойчив, наблюдателен и весьма терпелив. Изучая форму семян у растений, полученных в результате скрещиваний, он ради уяснения закономерностей передачи лишь одного признака ("гладкие - морщинистые") подверг анализу 7324 горошины. Каждое семя он рассматривал в лупу, сравнивая их форму и делая записи.

С опытов Менделя начался другой отсчет времени, главной отличительной чертой которого стал опять же введенный Менделем гибридологический анализ наследственности отдельных признаков родителей в потомстве. Трудно сказать, что именно заставило естествоиспытателя обратиться к абстрактному мышлению, отвлечься от голых цифр и многочисленных экспериментов. Но именно оно позволило скромному преподавателю монастырской школы увидеть целостную картину исследования; увидеть ее лишь после того, как пришлось пренебречь десятыми и сотыми долями, обусловленными неизбежными статистическими вариациями. Только тогда буквенно "помеченные" исследователем альтернативные признаки открыли ему нечто сенсационное: определенные типы скрещивания в разном потомстве дают соотношение 3:1, 1:1, или 1:2:1.

Мендель обратился к работам своих предшественников за подтверждением мелькнувшей у него догадки. Те, кого исследователь почитал за авторитеты, пришли в разное время и каждый по-своему к общему заключению: гены могут обладать доминирующими (подавляющими) или рецессивными (подавляемыми) свойствами. А раз так, делает вывод Мендель, то комбинация неоднородных генов и дает то самое расщепление признаков, что наблюдается в его собственных опытах. И в тех самых соотношениях, что были вычислены с помощью его статистического анализа. "Проверяя алгеброй гармонию" происходящих изменений в полученных поколениях гороха, ученый даже ввел буквенные обозначения, отметив заглавной буквой доминантное, а строчной - рецессивное состояние одного и того же гена.

Мендель доказал, что каждый признак организма определяется наследственными факторами, задатками (впоследствии их назвали генами), передающимися от родителей потомкам с половыми клетками. В результате скрещивания могут появиться новые сочетания наследственных признаков. И частоту появления каждого такого сочетания можно предсказать.

Обобщенно результаты работы ученого выглядят так:

Все гибридные растения первого поколения одинаковы и проявляют признак одного из родителей;
- среди гибридов второго поколения появляются растения как с доминантными, так и с рецессивными признаками в соотношении 3:1;
- два признака в потомстве ведут себя независимо и во втором поколении встречаются во всех возможных сочетаниях;
- необходимо различать признаки и их наследственные задатки (растения, проявляющие доминантные признаки, могут в скрытом виде нести задатки рецессивных);
- объединение мужских и женских гамет случайно в отношении того, задатки каких признаков несут эти гаметы.

В феврале и марте 1865 года в двух докладах на заседаниях провинциального научного кружка, носившего название Общества естествоиспытателей города Брио, один из рядовых его членов, Грегор Мендель, сообщил о результатах своих многолетних исследований, завершенных в 1863 году. Несмотря на то что его доклады были довольно холодно встречены членами кружка, он решился опубликовать свою работу. Она увидела свет в 1866 году в трудах общества под названием "Опыты над растительными гибридами".

Современники не поняли Менделя и не оценили его труд. Для многих ученых опровержение вывода Менделя означало бы ни много ни мало, как утверждение собственной концепции, гласившей, что приобретенный признак можно "втиснуть" в хромосому и обратить в наследуемый. Как только не сокрушали "крамольный" вывод скромного настоятеля монастыря из Брно маститые ученые, каких только эпитетов не придумывали, Дабы унизить, высмеять. Но время решило по-своему.

Да, Грегор Мендель не был признан современниками. Слишком уж простой, бесхитростной представилась им схема, в которую без нажима и скрипа укладывались сложные явления, составляющие в представлении человечества основание незыблемой пирамиды эволюции. К тому же в концепции Менделя были и уязвимые места. Так, по крайней мере, представлялось это его оппонентам. И самому исследователю тоже, поскольку он не мог развеять их сомнений. Одной из "виновниц" его неудач была ястребинка.

Ботаник Карл фон Негели, профессор Мюнхенского университета, прочитав работу Менделя, предложил автору проверить обнаруженные им законы на ястребинке. Это маленькое растение было излюбленным объектом Негели. И Мендель согласился. Он потратил много сил на новые опыты. Ястребинка - чрезвычайно неудобное для искусственного скрещивания растение. Очень мелкое. Приходилось напрягать зрение, а оно стало все больше и больше ухудшаться. Потомство, полученное от скрещивания ястребинки, не подчинялось закону, как он считал, правильному для всех. Лишь спустя годы после того, как биологи установили факт иного, не полового размножения ястребинки, возражения профессора Негели, главного оппонента Менделя, были сняты с повестки дня. Но ни Менделя, ни самого Негели уже, увы, не было в живых.

Очень образно о судьбе работы Менделя сказал крупнейший советский генетик академик Б.Л. Астауров, первый президент Всесоюзного общества генетиков и селекционеров имени Н.И. Вавилова: "Судьба классической работы Менделя превратна и не чужда драматизма. Хотя им были обнаружены, ясно показаны и в значительной мере поняты весьма общие закономерности наследственности, биология того времени еще не доросла до осознания их фундаментальности. Сам Мендель с удивительной проницательностью предвидел общезначимость обнаруженных на горохе закономерностей и получил некоторые доказательства их применимости к некоторым другим растениям (трем видам фасоли, двум видам левкоя, кукурузе и ночной красавице). Однако его настойчивые и утомительные попытки приложить найденные закономерности к скрещиванию многочисленных разновидностей и видов ястребинки не оправдали надежд и потерпели полное фиаско. Насколько счастлив был выбор первого объекта (гороха), настолько же неудачен второй. Только много позднее, уже в нашем веке, стало понятно, что своеобразные картины наследования признаков у ястребинки являются исключением, лишь подтверждающим правило. Во времена Менделя никто не мог подозревать, что предпринятые им скрещивания разновидностей ястребинки фактически не происходили, так как это растение размножается без опыления и оплодотворения, девственным путем, посредством так называемой апогамии. Неудача кропотливых и напряженных опытов, вызвавших почти полную потерю зрения, свалившиеся на Менделя обременительные обязанности прелата и преклонные годы вынудили его прекратить любимые исследования.

Прошло еще несколько лет, и Грегор Мендель ушел из жизни, не предчувствуя, какие страсти будут бушевать вокруг его имени и какой славой оно, в конце концов, будет покрыто. Да, слава и почет придут к Менделю уже после смерти. Он же покинет жизнь, так и не разгадав тайны ястребинки, не "уложившейся" в выведенные им законы единообразия гибридов первого поколения и расщепления признаков в потомстве".

Менделю было бы значительно легче, знай он о работах другого ученого Адамса, опубликовавшего к тому времени пионерскую работу о наследовании признаков у человека. Но Мендель не был знаком с этой работой. А ведь Адаме на основе эмпирических наблюдений за семьями с наследственными заболеваниями фактически сформулировал понятие наследственных задатков, подметив доминантное и рецессивное наследование признаков у человека. Но ботаники не слышали о работе врача, а тому, вероятно, выпало на долю столько практической лечебной работы, что на абстрактные размышления просто не хватало времени. В общем, так или иначе, но генетики узнали о наблюдениях Адамса, только приступив всерьез к изучению истории генетики человека.

Не повезло и Менделю. Слишком рано великий исследователь сообщил о своих открытиях научному миру. Последний был к этому еще не готов. Лишь в 1900 году, переоткрыв законы Менделя, мир поразился красоте логики эксперимента исследователя и изящной точности его расчетов. И хотя ген продолжал оставаться гипотетической единицей наследственности, сомнения в его материальности окончательно развеялись.

Мендель был современником Чарлза Дарвина. Но статья брюннского монаха не попалась на глаза автору "Происхождения видов". Остается лишь гадать, как бы оценил Дарвин открытие Менделя, если бы ознакомился с ним. Между тем великий английский натуралист проявлял немалый интерес к гибридизации растений. Скрещивая разные формы львиного зева, он по поводу расщепления гибридов во втором поколении писал: "Почему это так. Бог знает..." Умер Мендель 6 января 1884 года, настоятелем того монастыря, где вел свои опыты с горохом. Не замеченный современниками, Мендель, тем не менее, нисколько не поколебался в своей правоте. Он говорил: "Мое время еще придет". Эти слова начерпаны на его памятнике, установленном перед монастырским садиком, где он ставил свои опыты.

Знаменитый физик Эрвин Шрёдингер считал, что применение законов Менделя равнозначно внедрению квантового начала в биологии.

Революционизирующая роль менделизма в биологии становилась все более очевидной. К началу тридцатых годов нашего столетия генетика и лежащие в ее основе законы Менделя стали признанным фундаментом современного дарвинизма. Менделизм сделался теоретической основой Для выведения новых высокоурожайных сортов культурных растений, более продуктивных пород домашнего скота, полезных видов микроорганизмов. Менделизм дал толчок развитию медицинской генетики...

В августинском монастыре на окраине Брно сейчас поставлена мемориальная доска, а рядом с палисадником воздвигнут прекрасный мраморный памятник Менделю. Комнаты бывшего монастыря, выходящие окнами в палисадник, где Мендель вел свои опыты, превращены теперь в музей его имени. Здесь собраны рукописи (к сожалению, часть их погибла во время войны), документы, рисунки и портреты, относящиеся к жизни ученого, принадлежавшие ему книги с его пометками на полях, микроскоп и другие инструменты, которыми он пользовался, а также изданные в разных странах книги, посвященные ему и его открытию.

Грегор Мендель (1822 - 1884 ) - выдающийся чешский ученый. Основоположник генетики. Впервые обнаружил существование наследственных факторов, впоследствии названных генами.

Грегор Мендель проводил опыты с горохом. Серди большого количества сортов он выбрал для первого эксперимента два, отличающихся по одному признаку. Семена одного сорта гороха были желтые, а другого - зеленые. Известно, что горох, как правило, размножается путем самоопыления и поэтому в пределах сорта нет изменчивости по окраске семян. Используя это свойство гороха, Г. Мендель произвел искусственное опыление, скрестив сорта, отличающиеся цветом семян (желтым и зеленым). Независимо от того, к какому сорту принадлежали материнские растения, гибридные семена оказались только желтыми.
Следовательно, у гибридов первого поколения появился признак только одного родителя. Такие признаки Г. Мендель назвал доминантными . Признаки, не проявляющиеся у гибридов первого поколения, он назвал рецессивными . В опытах с горохом признак желтой окраски семян доминировал над зеленой окраской. Таким образом, в потомстве гибридов Г. Мендель обнаружил единообразие первого поколения , т.е. все гибридные семена имели одинаковую окраску. В опытах, где скрещивающиеся сорта отличались и по другим признакам, были получены такие же результаты: единообразие первого поколения и доминирование одного признака над другим.

Расщепление признаков у гибридов второго поколения. Первый закон Менделя.

Из гибридных семян гороха Г. Мендель вырастил растения, которые путем самоопыления произвели семена второго поколения. Среди них оказались не только желтые семена, но и зеленые. Всего он получил 6022 желтых и 2001 зеленое семя. Причем ¾ семян гибридов второго поколения имели желтую окраску и ¼ - зеленую. Следовательно, отношение числа потомков второго поколения с доминантным признаком к числу потомков с рецессивным оказалось равным 3: 1. Такое явление он назвал расщеплением признаков.

Сходные результаты во втором поколении дали многочисленные опыты по гибридологическому анализу других пар признаков. Основываясь на полученных результатах, Г. Мендель сформулировал свой первый закон - закон расщепления. В потомстве, полученном от скрещивания особей гибридов первого поколения, наблюдается явление расщепления: ¼ особей из гибридов второго поколения несет рецессивный признак, ¾ - доминантный .

Дигибридное скрещивание. Второй закон Менделя.

Скрещивание, в котором участвуют две пары аллелей , называют дигибридным скрещиванием.

Формулировка второго закона Менделя: расщепление по каждой паре генов идет независимо от других пар генов.


Грегор Мендель. Биография Менделя. Опыты Менделя. Законы Менделя.

Грегор Ян (Иоганн) Мендель 1822–1884 гг.

Грегор Ян (Иоганн) Мендель родился 22 июля 1822 г. в чешской деревушке Нинчице в семье бедного крестьянина. Местную школу он окончил в одиннадцатилетнем возрасте, после чего поступил в Опавскую гимназию. Мендель с юности отличался выдающимися способностями к математике, интересовался жизнью природы, вел наблюдения за садовыми цветами и пчелами в отцовском саду.

В 1840 г. он поступил на философский факультет университета в Оломоуце, но семейные неурядицы и болезнь помешали Менделю закончить образование. В 1843 г. он постригся в монахи и в августианском монастыре города Брно получил новое имя – Грегор.

Сразу же после посвящения Мендель стал изучать теологию и посещать лекции по сельскому хозяйству, шелкоразведению и виноградарству. Начиная с 1848 г., он стал преподавать латинский, греческий, немецкий языки и математику в гимназии города Знойно. В 1851–1853 гг. Мендель слушал лекции по естествознанию в Венском университете. Через несколько лет он стал настоятелем монастыря и получил возможность вести свои знаменитые опыты по гибридизации гороха (1856–1863 гг.) в монастырском саду. Мендель был первым биологом, начавшим систематические исследования наследственных свойств у растений по методу гибридизации.

После семилетних экспериментов Мендель доказал, что каждая из 22 разновидностей гороха при скрещивании сохраняет свои индивидуальные свойства. При этом он точно определил свойства, по которым следует различать отдельные виды гороха.

Скрещивая различные виды и изучая их свойства, Мендель пришел к убеждению, что некоторые признаки переходят на потомство непосредственно, он назвал их преобладающими свойствами; другие же признаки, появляющиеся через одно поколение, – рецессивными, т.е. уступающими свойствами,. Одновременно он установил, что при скрещивании двух сортов новое поколение наследует характерные черты родительских форм, причем происходит это по определенным правилам.

Явления, которые наблюдал Мендель, были позднее проверены и подтверждены многочисленными ботаниками и зоологами. Важно было убедиться, что правила Менделя носят всеобщий характер. Согласно этим правилам, наследственные черты переходят на потомство не только у растений, но и у животных, не исключая человека. Теперь принято эти правила называть Первым Законом Менделя или законом сегрегации. Этот Закон гласит: "Свойства двух организмов при их скрещиваии переходят на потомство, хотя некоторые из них могут быть скрытыми. Эти свойства обязательно проявляются во втором поколении гибридов".

Врожденные математические способности позволили Менделю дать количественные определения явления наследственности и обобщить экспериментальный материал в количественном отношении. Свои многолетние наблюдения и выводы из них он доложил 8 февраля и 8 марта 1865 г. Научному природоведческому обществу в Брно, однако математические формулы, приведенные Менделем в отчете, не были понятны биологами.

В соответствии с существовавшими тогда обычаями отчет Менделя переслали в Вену, Рим, Петербург, Упсалу, Краков и в другие города, но никто не обратил на него внимания. Смесь математики с ботаникой противоречила всем бытовавшим тогда представлениям. В те времена считалось, что родительские свойства смешиваются у потомства подобно кофе с молоком.

Наука о законах наследственности была названа "менделизмом" в честь трудолюбивого исследователя жизни растений. Английский биолог Уильям Бетсон в 1906 г. назвал эту науку генетикой.

Заслуга Менделя заключается в том, что он сумел поставить перед собой точную научную задачу, выбрать превосходный растительный материал для проведения опытов и упростить метод наблюдений путем рассмотрения небольшого числа отдельных свойств, по которым исследуемые виды отличаются друг от друга, не учитывая всех других второстепенных признаков. Кроме того, будучи прекрасным математиком, Мендель выразил результаты своих опытов с помощью математических формул.

Можно утверждать, что Мендель стал основоположником новой отрасли биологии - генетики, хотя сам ничего не знал о существовании хромосом и носителей наследственных свойств, названных в 1909 г. датским исследователем Иоганнсеном генами.

Мендель был принят в члены многих научных обществ: метеорологического помологического, пчеловодческого и др.

Умер Мендель 6 января 1884 г. в городе Старое Брно. 4 – 7 августа 1965 г. в ознаменование сотой годовщины опубликования труда Менделя, положившего начало генетике, состоялся большой съезд ученых.

В качестве символической эмблемы съезда был принят рисунок, изображающий цветок гороха и модель строения частички ДНК.

Работы Г. Менделя и их значение
Честь открытия основных закономерностей наследования признаков, наблюдающихся при гибридизации, принадлежит Грегору (Иоганну) Менделю (1822–1884) – выдающемуся австрийскому естествоиспытателю, настоятелю августинского монастыря Св.Фомы в г. Брюнне (ныне г. Брно)

Главной заслугой Г. Менделя является то, что для описания характера расщепления он впервые применил количественные методы, основанные на точном подсчете большого числа потомков с контрастирующими вариантами признаков. Г. Мендель выдвинул и экспериментально обосновал гипотезу о наследственной передаче дискретных наследственных факторов. В его работах, выполнявшихся в период с 1856 по 1863 г., были раскрыты основы законов наследственности. Результаты своих наблюдений Г. Мендель изложил в брошюре «Опыты над растительными гибридами» (1865).

Мендель следующим образом формулировал задачу своего исследования. «До сих пор,– отмечал он во «Вступительных замечаниях» к своей работе,– не удалось установить всеобщего закона образования и развития гибридов… Окончательное решение этого вопроса может быть достигнуто только тогда, когда будут произведены детальные опыты в различнейших растительных семействах. Кто пересмотрит работы в этой области, тот убедится, что среди многочисленных опытов ни один не был произведен в том объеме и таким образом, чтобы можно было определить число различных форм, в которых появляются потомки гибридов, с достоверностью распределить эти формы по отдельным поколениям и установить их взаимные численные отношения».

Первое, на что Мендель обратил внимание, – это выбор объекта. Для своих исследований Мендель выбрал удобный объект – чистые линии (сорта) гороха посевного (Pisum sativum L.), различающиеся по одному или немногим признакам. Горох как модельный объект генетических исследований характеризуется следующими особенностями:

1. Это широко распространенное однолетнее растение из семейства Бобовые (Мотыльковые) с относительно коротким жизненным циклом, выращивание которого не вызывает затруднений.

2. Горох – строгий самоопылитель, что снижает вероятность заноса нежелательной посторонней пыльцы. Цветки у гороха мотылькового типа (с парусом, веслами и лодочкой); в то же время строение цветка гороха таково, что техника скрещивание растений относительно проста.

3. Существует множество сортов гороха, различающихся по одному, двум, трем и четырем наследуемым признакам.

Едва ли не самым существенным во всей работе было определение числа признаков, по которым должны различаться скрещиваемые растения. Мендель впервые осознал, что, только начав с самого простого случая – различия родителей по одному-единственному признаку – и постепенно усложняя задачу, можно надеяться распутать клубок фактов. Строгая математичность его мышления выявилась здесь с особенной силой. Именно такой подход к постановке опытов позволил Менделю четко планировать дальнейшее усложнение исходных данных. Он не только точно определял, к какому этапу работы следует перейти, но и математически строго предсказывал будущий результат. В этом отношении Мендель стоял выше всех современных ему биологов, изучавших явления наследственности уже в XX в.

Описание опытов Менделя .

Мендель проводил свои опыты в монастырском саду на небольшом участке площадью 35×7 м. Первоначально он выписал из различных семеноводческих ферм 34 сорта гороха. В течение двух лет Мендель высевал эти сорта на отдельных делянках и проверял, не засорены ли полученные сорта, сохраняют ли они свои признаки неизменными при размножении без скрещиваний. После такого рода проверки он отобрал для экспериментов 22 сорта.

Мендель начал с опытов по скрещиванию сортов гороха, различающихся по одному признаку (моногибридное скрещивание). Для этих опытов он использовал сорта гороха, различающиеся по ряду признаков:


Признаки

Альтернативные варианты признаков

Доминантные

Рецессивные

Форма зрелых семян

Круглые

Морщинистые

Окраска семядолей

Желтая

Зеленая

Окраска семенной кожуры

Серая

Белая (полупрозрачная)

Окраска цветков

Пурпурные

Белые

Форма зрелых бобов

Выпуклые

С перехватами

Окраска незрелых бобов

Зеленые

Желтые

Расположение цветков

Пазушное

Верхушечное

Высота растения

Высокие

Низкие

Наличие пергаментного слоя

Имеется

Отсутствует

Рассмотрим некоторые из опытов Менделя подробнее.
Опыт 1 . Скрещивание сортов, различающихся по окраске цветков.

Первый год . На двух смежных делянках выращивалось два сорта гороха, различающихся по окраске цветков: пурпурноцветковый и белоцветковый. В фазе бутонизации Мендель произвёл кастрацию части цветков на пурпурноцветковых растениях: он аккуратно разрывал лодочку и удалял все 10 тычинок. Затем на кастрированный цветок надевался изолятор (трубка из пергамента), чтобы исключить случайный занос пыльцы. Через несколько дней (в фазе цветения), когда пестики кастрированных цветков становились готовыми к восприятию пыльцы, Мендель произвёл скрещивание: он снял изоляторы с кастрированных цветков пурпурноцветкового сорта и нанёс на рыльца их пестиков пыльцу с цветков белоцветкового сорта; после этого на опыленные цветки вновь надевались изоляторы. После завязывания плодов изоляторы снимались. После созревания семян Мендель собрал их с каждого искусственно опыленного растения в отдельную тару.

Второй год . На следующий год Мендель вырастил из собранных семян гибридные растения – гибридов первого поколения. На всех этих растениях образовались пурпурные цветки, несмотря на то, что материнские растения были опылены пыльцой с белоцветкового сорта. Мендель предоставил этим гибридам возможность неконтролируемого опыления (самоопыления). После созревания семян Мендель вновь собрал их с каждого растения в отдельную тару.

Третий год . На третий год Мендель вырастил из собранных семян гибридов второго поколения. Часть этих растений дала только пурпурные цветки, а часть только белые, причем пурпурноцветковых растений оказалось примерно в 3 раза больше, чем белоцветковых.
Опыт 2 . Скрещивание сортов, различающихся по окраске семядолей.

Особенность этого опыта в том, что окраска горошин (при полупрозрачной семенной кожуре) определяется окраска семядолей, а семядоли являются частью зародыша – нового растения, сформировавшегося под защитой материнского растения.

Первый год . На двух смежных делянках выращивалось два сорта гороха, различающихся по окраске семядолей: желтосемяный и зеленосемянный. Мендель произвёл кастрацию части цветков на растениях, выращенных из желтых семян, с последующей изоляцией кастрированных цветков. В фазе цветения Мендель произвел скрещивание: на рыльца пестиков кастрированных цветков он нанес пыльцу с цветков растений, выращенных из зеленых семян. Искусственно опыленные цветки дали плоды только с желтыми семенами, несмотря на то, что материнские растения были опылены пыльцой с зеленосемянного сорта (еще раз подчеркнем, что окраска этих семян определялась окраской семядолей зародышей, которые уже являются гибридами первого поколения). Полученные семена Мендель также собрал с каждого искусственно опыленного растения в отдельную тару.

Второй год . На следующий год Мендель вырастил из собранных семян гибридные растения – гибридов первого поколения. Как и в предыдущем опыте, он предоставил этим гибридам возможность неконтролируемого опыления (самоопыления). После созревания плодов Мендель обнаружил, что внутри каждого боба встречаются и желтые, и зеленые горошины. Мендель подсчитал общее количество горошин каждого цвета и обнаружил, что желтых горошин примерно в 3 раза больше, чем зеленых.

Таким образом, опыты с изучением морфологии семян (окраски их семядолей, формы поверхности семян) позволяют получить результаты уже на второй год.
Скрещивая растения, различающиеся и по другим признакам, Мендель во всех без исключения опытах получил аналогичные результаты: всегда в первом гибридном поколении проявлялся признак только одного из родительских сортов, а во втором поколении наблюдалось расщепление в соотношении 3:1.

На основании своих экспериментов Мендель ввел понятие доминантного и рецессивного признаков. Доминантные признаки переходят в гибридные растения совершенно неизменными или почти неизменными, а рецессивные становятся при гибридизации скрытыми. Заметим, что к подобным выводам пришли французские естествоиспытатели Сажрэ и Нодэн, которые работали с тыквенными растениями, имеющими раздельнополые цветки. Однако величайшая заслуга Менделя в том, что он впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков.

Для дальнейшего анализа наследственной природы полученных гибридов Мендель проводил скрещивания между сортами, различающимся по двум, трем и более признакам, то есть проводит дигибридное и тригибридное скрещивания. Далее он изучил еще несколько поколений гибридов, скрещиваемых между собой. В результате получили прочное научное обоснование следующие обобщения фундаментальной важности:

1. Явление неравнозначности наследственных элементарных признаков (доминантных и рецессивных), отмеченное Сажрэ и Нодэном.

2. Явление расщепления признаков гибридных организмов в результате их последующих скрещиваний. Были установлены количественные закономерности расщепления.

3. Обнаружение не только количественных закономерностей расщепления по внешним, морфологическим признакам, но и определение соотношения доминантных и рецессивных задатков среди форм, с виду не отличимых от доминантных, но являющихся смешанными (гетерозиготными) по своей природе. Правильность последнего положения Мендель подтвердил, кроме того, путем возвратных скрещиваний гибридов первого поколения с родительскими формами.

Таким образом, Мендель вплотную подошел к проблеме соотношения между наследственными задатками (наследственными факторами) и определяемыми ими признаками организма. Мендель ввел понятие дискретного наследственного задатка, не зависящего в своем проявлении от других задатков. Эти задатки сосредоточены, по мнению Менделя, в зачатковых (яйцевых) и пыльцевых клетках (гаметах). Каждая гамета несет по одному задатку. Во время оплодотворения гаметы сливаются, формируя зиготу; при этом в зависимости от сорта гамет, возникшая из них зигота получит те или иные наследственные задатки. За счет перекомбинации задатков при скрещиваниях образуются зиготы, несущие новое сочетание задатков, чем и обусловливаются различия между индивидуумами.

Грегор Мендель первым приблизился к разгадке древней тайны. Он был монахом в Брюннском монастыре (ныне Брно, Чехия) и помимо преподавательской деятельности занимался на досуге опытами по скрещиванию садового гороха. Его доклад на эту тему, опубликованный в 1865 году, не встретил широкого признания. Несмотря на то что за шесть лет до этого пристальное внимание всего ученого мира привлекла теория естественного отбора, те немногие исследователи, что прочли статью Менделя, не придали ей особого значения и не связали изложенные в ней факты с теорией происхождения видов. И только в начале XX века три биолога, проводя эксперименты над разными организмами, получили схожие результаты, подтвердив гипотезу Менделя, который посмертно прославился как основоположник генетики.

Почему же Менделю удалось то, что не удавалось большинству других исследователей? Во-первых, он исследовал только простые, четко определяемые признаки - например, цвет или форму семян. Выделить и опознать простые признаки, которые могут передаваться по наследству, нелегко. Такие признаки, как высота растения, а также интеллект или форма носа человека, зависят от множества факторов, и проследить законы их наследования очень трудно. Внешне заметные и при этом независимые от других признаки встречаются довольно редко. Кроме того, Мендель наблюдал передачу признака на протяжении нескольких поколений. И что, пожалуй, самое важное, он записывал точное количество особей с тем или иным признаком и проводил статистический анализ данных.

В классических экспериментах по генетике всегда используют два сорта или более, две разновидности, или линии, одного и того же биологического вида, отличающиеся друг от друга по таким простым признакам, как окраска цветка растений или окрас меха животных. Мендель начинал с чистых линий гороха, то есть с линий, которые на протяжении нескольких поколений скрещивались исключительно друг с другом и потому постоянно демонстрировали только одну форму признака. О таких линиях говорят, что они размножаются в чистоте. Во время эксперимента Мендель скрещивал между собой особи из разных линий и получал гибриды. При этом на рыльце растения с удаленными пыльниками из одной линии он переносил пыльцу растения из другой линии. Предполагалось, что признаки разных родительских растений в гибридном потомстве должны смешаться между собой. В одном из экспериментов (рис. 4.1) Мендель скрестил чистый сорт с желтыми семенами и чистый сорт с зелеными семенами. В записи эксперимента крестик означает «скрещивается с...», а стрелка указывает на следующее поколение.

Можно было предположить, что у гибридного поколения будут желто-зеленые семена или некоторые желтые, а какие-то зеленые. Но образовались только желтые семена. Казалось бы, что признак «зеленый» совсем исчез из поколения F 1 (буквой F обозначаются поколения, от латинского слова filius - сын). Затем Мендель посадил семена из поколения F 1 и скрестил растения между собой, получив таким образом второе поколение F 2 . Интересно, что признак «зеленый», исчезнувший в первом гибридном поколении, проявился вновь: у одних растений из поколения F 2 были желтые семена, а у других зеленые. Такие же результаты дали другие эксперименты по скрещиванию растений с разными проявлениями признака. Например, когда Мендель скрещивал чистый сорт гороха с фиолетовыми цветками и чистый сорт с белыми цветами, в поколении F 1 все растения оказывались с фиолетовыми цветками, а в поколении F 2 у одних растений цветки были фиолетовые, а у других белые.

В отличие от своих предшественников, Мендель решил подсчитать точное количество растений (или семян) с тем или иным признаком. Скрещивая растения по цвету семян, он получил в поколении F 2 6022 желтых семени и 2001 зеленое семя. Скрещивая растения по окраске цветков, он получил 705 фиолетовых цветков и 224 белых. Эти цифры еще ничего не говорят, и в похожих случаях предшественники Менделя опускали руки и утверждали, что ничего разумного по этому поводу сказать нельзя. Однако Мендель заметил, что отношение этих чисел близко к пропорции 3:1, и это наблюдение подтолкнуло его к простому выводу.

Мендель разработал модель - гипотетическое объяснение того, что происходит при скрещивании. Ценность модели зависит от того, насколько хорошо она объясняет факты и предсказывает результаты экспериментов. Согласно модели Менделя, в растениях имеются некие «факторы», определяющие передачу наследственных признаков, причем каждое растение имеет по два фактора для каждого признака - по одному от каждого родителя. Кроме того, один из этих факторов может быть доминантным, то есть сильным и видимым, а другой - рецессивным, или слабым и невидимым. Желтая окраска семян должна быть доминантной, а зеленая - рецессивной; фиолетовый цвет доминантен по отношению к белому. Такое свойство «факторов наследственности» находит отражение в записи генетических экспериментов: прописная буква означает доминантный признак, а строчная - рецессивный. Например, желтую окраску можно обозначить как Ү, а зеленую как у. Согласно современной точке зрения, «факторы наследственности» - это отдельные гены, определяющие цвет или форму семян, и мы называем различные формы гена аллелями или аллеломорфами (морф - форма, аллелон - друг друга).

Рис. 4.1. Объяснение результатов, полученных Менделем. Каждое растение имеет две копии гена, определяющего цвет, но передает своим гаметам по одной из этих копий. Ген Yдоминантен по отношению к гену у, поэтому семена всех растений поколения F t с набором генов Yy желтые. В следующем поколении возможны четыре комбинации генов, три из которых дают желтые семена и одна - зеленые

На рис. 4.1 показан ход экспериментов Менделя, а также приведены выводы, к которым он пришел. Чистая линия гороха с желтыми семенами должна обладать двумя факторами Y(YY), а чистая линия гороха с семенами зеленого цвета - двумя факторами у (уу). Так как оба фактора в родительских растениях одинаковы, мы говорим, что они гомозиготны или что эти растения - гомозиготы. Каждое из родительских растений дает потомству по одному фактору, определяющему цвет семян, поэтому все растения поколения F t имеют факторы Yy. Два фактора цвета у них разные, поэтому мы говорим, что они гетерозиготны или что эти растения - гетерозиготы. Когда гетерозиготные растения скрещиваются между собой, каждое дает по два вида гамет, половина которых переносит фактор Y, а другая половина - фактор у. Гаметы объединяются случайным образом и дают четыре вида комбинаций: YY, Yy, уҮ или уу. Зеленые семена образуются только при последней комбинации, так как оба фактора в ней рецессивные; при других комбинациях получаются желтые семена. Так объясняется отношение 3:1, которое наблюдал Мендель.