Здоровье, отношения, дом и быт. Портал о самом интересном

Механизм оплодотворения у человека. Механизм зачатия ребенка. Овуляция, процесс оплодотворения. Образование и развитие зародыша

Откопал старый текстик у себя в закромах, решил опубликовать здесь. Не знаю, насколько интересен этот вопрос моей аудитории, но то, что он интересен подавляющему большинству моих друзей и знакомых - это точно. Причем, как оказалось, не просто интересен, а еще и мало понятен. Видимо, в силу того, что с половым воспитанием в нашей стране полный ах.

Зачатие ребенка

Надеюсь, никому не надо объяснять, что непорочного зачатия все же не существует. Зачатию ребенка предшествует половой акт (кстати, по-латыни он называется коитус – coitus). Из-за особенностей строения женских половых путей сперма попадает большей частью в задний свод влагалища (условно можно сказать «ближе к позвоночнику»), где в это время ее уже поджидает так называемая «слизистая пробка» – сгусток слизи, «принимающий» в себя сперму и втягивающийся с нею обратно в матку. Эта пробка выделяется в момент возбуждения женщины, которое сопровождается сокращениями мускулатуры матки и открытием наружного зева ее шейки. Здесь хочу отметить одну занимательную вещь – вы можете сами определить момент появления пробки из шейки матки. Думаю, многие замечали, что во время полового акта зачастую из влагалища женщины доносятся, извините за выражение, «пердящие» звуки. Дамы, бывает, этого смущаются, а зря. Ведь именно такие звуки и говорят о том, что слизистая пробка появилась и готова к приему спермы. Попутно хочу заметить, что в задний свод влагалища попадает только 2-3 мл спермы, остальная часть благополучно вытекает из влагалища.

Строение сперматозоида и яйцеклетки

Давайте немного отойдем от повествования и посмотрим, что представляют собой основные его участники – сперматозоид и яйцеклетка. Яйцеклетка – это одинарная клетка, достаточно крупная. Срок ее жизни – 24 часа с момента выхода из яичника. Сперматозоиды же – «живчики», сохраняют способность к оплодотворению несколько суток (от трех до пяти). И именно из-за таких особенностей наиболее благоприятными сроками оплодотворения являются день овуляции и несколько суток до и после. Причем необходимо еще учесть, что сперматозоиды движутся не так уж и быстро по человеческим меркам – сутки и даже более требуются им, чтобы добраться до цели. На этих принципах основан метод предохранения от беременности. Вы можете и сами определить день овуляции и рассчитать благоприятные дни для наступления беременности с помощью измерения так называемой базальной температуры – температуры в прямой кишке. Во время овуляции она на градус выше нормы. Но этот метод очень ненадежен, так как температура может повышаться из-за множества причин – стрессов, физической активности, различных заболеваний (особенно простудных).

Сперматозоид намного меньше яйцеклетки и в отличие от нее подвижен. Грубо говоря, сперматозоид – это узкоспециализированная клетка, имеющая ядро с хромосомами и жгутик, с помощью которого он передвигается. Причем скорость передвижения по нашим меркам ничтожна – 30-50 мкм/с (один микрометр – одна миллионная доля метра), однако сам сперматозоид тратит очень много энергии для того, чтобы передвигаться с такой скоростью. Как же он находит яйцеклетку? Дело в том, что яйцеклетка выделяет особые вещества, которые «привлекают» сперматозоиды, а сперматозоиды, в свою очередь, обладают хемотаксисом – способность целенаправленно двигаться в направлении «пахнущей» яйцеклетки. Попав в половые пути женщины, сперматозоиды сохраняют способность к оплодотворению в среднем 3-5 суток.

Оплодотворение яйцеклетки

Но вернемся к моменту оплодотворения яйцеклетки. После того, как слизистая пробка втянулась в матку, сперматозоиды продолжают движение уже самостоятельно.

В нормальных условиях примерно через полчаса-час сперматозоиды попадают в матку, а через полтора-два часа – в ампулу маточной трубы, где их уже поджидает яйцеклетка. Хотя нет, не поджидает – ожидания никакого не предусмотрено. Либо яйцеклетка оплодотворяется и дальше по трубам движется уже зародыш, либо неоплодотворенная яйцеклетка погибает.

Конечно, яйцеклетку находят сразу много сперматозоидов. Они внедряются в ее оболочку и своими движениями начинают раскручивать, разрыхляя ее таким образом. А оболочка у нее состоит из нескольких слоев, или зон. Поэтому сперматозоиды вынуждены еще и растворять ее специальными веществами. И ведь насколько интересно все устроено – в сперме миллионы сперматозоидов и только один достигнет в итоге цели. Остальные же просто играют роль помощников – одни гибнут в кислой среде влагалища, тем самым позволяя своим собратьям двигаться буквально по их телам вперед, а другие, раскручивая яйцеклетку и растворяя ее оболочки, помогают единственному призеру попасть внутрь. А вот кто будет тем самым призером – это решает его величество случай. Все спекуляции на тему «вы появились от самого быстрого и сильного сперматозоида» не верны, так как сперматозоиды, достигшие яйцеклетки, все одинаково сильные и быстрые. Просто ваш – самый удачливый.

Как только тот самый удачливый сперматозоид проник внутрь и оплодотворил яйцеклетку, ее оболочка становится невосприимчива к попыткам остальных попасть внутрь. Джекпот выигран, остальные остались не у дел.

Образование и развитие зародыша

После проникновения сперматозоида внутрь яйцеклетки их ядра сливаются и образуют первую клетку будущего организма – зиготу. При этом материнские хромосомы и отцовские образуют полный генный набор будущего организма. В среднем через сутки зигота начинает делиться, двигаясь одновременно по маточной трубе к полости матки. Сначала зигота делится на 2 клетки, потом на 4, затем на 8 и так далее. Ниже на фото как раз и показаны эти стадии. В итоге из одной клетки получаются целые триллионы!

Первые 3-5 суток зародыш получает питание из тех веществ, которые содержались в самой яйцеклетке. Далее она уже имплантируется в матку (в ее внутренний слой – эндометрий) и образует плаценту, питающую будущего ребенка вплоть до момента рождения. Соответственно, примерно через две недели при отсутствии менструации женщина может предположить, что беременна.

Надо отметить, что иногда при овуляции в маточные трубы выходят две яйцеклетки, каждая из которых может оплодотвориться отдельным сперматозоидом. В таком случае получаются разнояйцевые близнецы (яйцеклетку еще называют просто «яйцом», «ovo» по-гречески. Отсюда и пошло слово «овуляция»). Однояйцевые же получаются, соответственно, из одной яйцеклетки, но разделенной в момент первого деления на две самостоятельных зиготы. Поэтому и получается, что однояйцевые близнецы – копия друг друга, а разнояйцевые – нет.

В мире хромосом и генов

Как мы уже выяснили, при зачатии случайным образом закладываются все передающиеся по наследству характеристики ребенка – физические данные, пол, группа крови, цвет глаз, волос и так далее. Причем ребенку генов достается поровну – по 23 хромосомы от отца и матери (гены располагаются в хромосомах). Развитие ребенка во время беременности, в младенчестве, детстве и далее во многом будет подчинено именно этой программе.

Однако только лишь одна пара хромосом определяет пол ребенка. Мужчины имеют пару ХУ, а женщины – ХХ. Это последняя, 23 пара хромосом. Соответственно, выходит, что одна Х-хромосома у будущего ребенка обязательно от матери. Вторая же хромосома зависит от того, какой сперматозоид первым достиг яйцеклетки. Если он нес в себе Х-хромосому – будет девочка (ХХ). Если же У – будет мальчик (ХУ). Причем интересно, что сперматозоиды, несущие Х-хромосому, передвигаются медленнее несущих У-хромосому, но они более живучие. Поэтому если оплодотворение произошло через двое-трое суток после полового акта, то высока вероятность рождения мальчика. Если же позднее – то девочки. На этом основан метод планирования пола будущего ребенка.

Вот вроде и все. Если что-то не понятно или появились вопросы – пишите в комментах.

Оплодотворение - соединение двух гамет, в результате чего образуется оплодотворенное яйцо - зигота - начальная стадия развития нового организма.

Зигота содержит материнскую и отцовскую гаметы. В зиготе возрастает ядерно-плазменное соотношение. Резко усиливаются обменные процессы. Зигота способна к дальнейшему развитию.

Сущность оплодотворения состоит во внесении сперматозоидом отцовских хромосом. Сперматозоид оказывает стимулирующее влияние, вызывающее начало развития яйцеклетки.

Оплодотворению предшествует осеменение, обеспечивающее встречу мужских и женских гамет. Осеменение может быть наружным и внутренним.

Оплодотворение может произойти лишь при определенной концентрации сперматозоидов в семенной жидкости. Обычно в 1 мл семенной жидкости мужчины содержится около 350 млн. сперматозоидов.

Искусственное осеменение и оплодотворение в пробирке с последующей трансплантацией позволило женщинам, которые ранее не могли иметь детей, испытать счастье материнства.

После осеменения происходит оплодотворение

Яйцеклетки животных и растений выделяют в окружающую среду вещества, активирующие сперматозоиды. Сперматозоиды двигаются по направлению к яйцеклетке. Вещества, выделяемые яйцеклеткой, вызывают склеивание сперматозоидов, что способствует удержанию их вблизи яйцеклетки. К яйцеклетке подходит множество сперматозоидов, но проникает один. Проникновению сперматозоида в яйцеклетку способствуют ферменты - гиалуронидаза и др. Ферменты выделяются акросомой. Оболочка яйцеклетки растворяется, и через отверстие в ней сперматозоид проникает в яйцеклетку. На поверхности яйца образуется оболочка оплодотворения, которая защищает яйцо от проникновения других сперматозоидов. Между этой оболочкой и поверхностью яйца есть свободное пространство, заполненное жидкостью.

Проникновение сперматозоида способствует завершению второго деления мейоза, и овоцит 2-го порядка становится зрелым яйцом. В яйце усиливается метаболическая активность, увеличивается потребление кислорода и происходит интенсивный синтез белка.

Ядра сперматозоида и яйцеклетки сближаются, их мембраны растворяются. Ядра сливаются и восстанавливается диплоидный набор хромосом. Это самое основное в процессе оплодотворения. Оплодотворенное яйцо называют зиготой. Зигота способна к дальнейшему развитию.

При оплодотворении сперматозоид вносит свой хромосомный материал в яйцеклетку и оказывает стимулирующее влияние, вызывая развитие организма.

Таким образом, важнейшие этапы процесса оплодотворения включают:1.Проникновение сперматозоида в яйцеклетку;2.Активацию в ядре метаболических процессов;

3. ядер яйцеклетки и сперматозоида и восстановление диплоидного набора хромосом.

37.Ранние этапы развития зародыша. Бластула. Гаструла.

ДРОБЛЕНИЕ

В результате оплодотворения образуется зигота, которая начинает дробиться. Дробление сопровождается митотическим делением. Нет роста клеток, и объем зародыша не изменяется. Это происходит потому, что между делениями в короткой интерфазе отсутствует постмитотический период, а синтез ДНК начинается в телофазе предшествующего митотического деления. Клетки, образующиеся в процессе дробления, называются бластомерами, а зародыш -бластулой.

Типы дробления зависят от количества и распределения желтка в яйцеклетках. Дробление может быть:

полным равномерным;

полным неравномерным;

неполным дискоидальным;

неполным поверхностным.

Полное равномерное дробление характерно для изолецитальных яиц

Борозда дробления проходит по меридиану, образуя два бластомера. Затем снова делится ядро, и на поверхности зародыша появляется вторая борозда дробления, идущая по меридиану перпендикулярно первой. Образуются четыре бластомера. Третья борозда проходит по экватору и делит его на восемь частей. Затем происходит чередование меридионального и экваториального дроблений. Число бластомеров увеличивается. Зародыш на стадии 32 бластомеров называют морулой. Дробление продолжается до образования зародыша, похожего на пузырек, стенки которого образованы одним слоем клеток, называемом бластодермой. Бластомеры расходятся от центра зародыша, образуя полость, которая называется первичной или бластоцелью. Бластомеры имеют одинаковые размеры. В результате такого дробления образуется целобластула

ГАСТРУЛЯЦИЯ

По окончании периода дробления у многоклеточных животных начинается период образования зародышевых листков - гаструляция. Гаструляция связана с перемещением эмбрионального материала. Сначала образуется ранняя гаструла, имеющая два зародышевых листка (эктодерму и энтодерму), затем поздняя гаструла, когда формируется третий зародышевый листок - мезодерма. Образующийся зародыш называют гаструлой.

Образование ранней гаструлы происходит следующим образом:

иммиграцией (выселением клеток), как у кишечнополостных;

инвагинацией (впячиванием), как у ланцетника;

эпиболией (обрастанием), как у лягушки;

деляминацией (расщеплением), как у некоторых кишечнополостных.

При иммиграции (выселении) часть клеток бластодермы с поверхности зародыша уходит в бластоцель. Образуется наружный слой - эктодерма и внутренний - энтодерма. Бластоцель заполнена клетками. Такой способ образования гаструлы характерен для кишечнополостных.

Для ланцетника характерно образование гаструлы путем инвагинации (впячивания). При инвагинации определенный участок бластодермы (вегетативный полюс) прогибается внутрь и достигает анимального полюса. Образуется двухслойный зародыш - гаструла. Наружный слой клеток называют эктодермой, внутренний - энтодермой. Энтодерма выстилает полость первичной кишки (гастроцель). Отверстие, при помощи которого полость сообщается с внешней средой, называется первичным ртом - бластопором. У первичноротых животных (черви, моллюски, членистоногие) он превращается в ротовое отверстие. У вторичноротых - в анальное отверстие, а рот образуется на противоположном конце тела (хордовые).

Эпиболия (обрастание) характерна для животных, развивающихся из телолецитальных яиц. Образование гаструлы идет за счет быстрого деления микромеров, которые обрастают вегетативный полюс. Макромеры оказываются внутри зародыша. Образование бластопора не происходит и нет гастроцели.

Эпиболия характерна для амфибий.

Деляминация (расслоение) встречается у кишечнополостных, бластула которых похожа на морулу. Клетки бластодермы делятся на наружный и внутренний слои. Наружный слой образует эктодерму, внутренний - энтодерму.

У всех многоклеточных, кроме губок и кишечнополостных, образуется третий зародышевой листок - мезодерма. Формирование мезодермы происходит двумя способами:Телобластическим;Энтероцельным.

Телобластический способ характерен для первичноротых. На границе между эктодермой и энтодермой по бокам от бластопора клетки -- телобласты - начинают делиться и дают начало мезодерме.

Энтероцельный способ характерен для вторичноротых. Клетки, формирущие мезодерму, обособляются в виде карманов первичной кишки. Полости карманов превращаются в целом. Мезодерма делится на отдельные участки - сомиты, из которых образуются определенные ткани и органы.

Оплодотворение, исходный момент возникновения новой генетической индивидуальности, представляет собой процесс соединения женской и мужской гамет.

В результате оплодотворения возникает одноклеточный зародыш с диплоидным набором хромосом и активируется цепь событий, лежащих в основе развития организма.

Биологическое значение оплодотворения огромно: будучи предпосылкой развития новой индивидуальности, оно вместе с тем является условием продолжения жизни и эволюции вида.

Следует подчеркнуть, что оплодотворение представляет собой не одномоментный акт, но именно процесс, занимающий более или менее продолжительный отрезок времени. Это многоступенчатый процесс, в котором различаются следующие этапы: привлечение сперматозоида яйцом, связывание гамет и, наконец, слияние мужских и женских половых клеток. В научной литературе события, связанные со сближением гамет иногда называют осеменением различая наружное и внутреннее осеменение, в зависимости от того, выводятся мужские половые клетки в окружающую среду или в половые органы женской особи. Наружное осеменение характерно для животных, обитающих в водной среде. Внутреннее осеменение присуще главным образом наземным животным, хотя оно достаточно часто встречается и у обитателей водной среды. Осеменение может быть свободным при котором все области ооцита доступны спермиям, но может быть и ограниченным, когда на поверхности яйцеклетки имеется плотная оболочка с микропиле. При внутреннем осеменении у ряда животных мужские гаметы передаются самкам в виде сперматофоров , особых капсул, содержащих сперматозоиды. Сперматофоры сначала выводятся в окружающую среду, а затем тем или иным способом переносятся в половые пути самки.

Соединение гамет предопределяет возможность кариогамии , или слияния ядер. Благодаря кариогамии происходит объединение отцовских и материнских хромосом, ведущее к образованию генома новой особи. В результате слияния гамет возникает диплоидная зигота, восстанавливается способность к репликации ДНК и начинается подготовка к делениям дробления. Механизмы активации яйца к развитию относительно автономны. Их включение может быть осуществлено и помимо оплодотворения, что происходит, например, при естественном или искусственном девственном развитии, или партеногенезе .

Интерес к проблеме оплодотворения выходит далеко за рамки собственно эмбриологии. Слияние гамет - плодотворно используемая модель для изучения тонких молекулярных и клеточных механизмов специфического взаимодействия клеточных мембран; для изучения молекулярных основ активации метаболизма и пролиферации соматических клеток. Общебиологический интерес представляет и то, что оплодотворение являет собой яркий и, может быть, уникальный пример полного обращения клеточной дифференциации. Действительно, высокоспециализированные половые клетки не способны к самовоспроизведению. Они гаплоидны и не могут делиться. Однако после слияния они превращаются в тотипотентную клетку, которая служит источником формирования всех клеточных типов, присущих данному организму.

История открытия оплодотворения теряется в глубине веков. Во всяком случае, в XVIII столетии итальянский естествоиспытатель аббат Лаццаро Спалланцани (1729-1799) экспериментально доказал, что оплодотворение зависит от наличия спермы, и впервые осуществил искусственное оплодотворение яиц лягушки, смешивая их со спермой, полученной из семенников. Тем не менее смысл происходящих при этом событий оставался неясным практически до последней четверти XIX века, когда Оскар Гертвиг (1849-1922) в конце 1870-х годов, изучая оплодотворение у морских ежей, пришел к заключению, что сущность этого процесса состоит в слиянии ядер половых клеток. Вместе с работами бельгийца Эдуарда ван Бенедена (1883, аскарида), немецкого ученого Теодора Бовери (1887, аскарида), швейцарского зоолога Германа Фоля (1887, морская звезда) исследования О. Гертвига заложили основу современных представлений об оплодотворении. Следует подчеркнуть, что именно эти работы послужили веским основанием для предположения о том, что ядро является носителем наследственных свойств. Именно Т. Бовери (1862-1915) в серии блестящих цитологических исследований обосновал в конце 1880-х годов теорию индивидуальности хромосом и создал основу цитогенетики.

Вскоре после выяснения сущности оплодотворения исследователи сосредоточили внимание на механизмах, лежащих в основе этого процесса. Эта область исследований сохраняет актуальность и в наше время. Пальма первенства в построении теории оплодотворения принадлежит американскому исследователю Франку Лилли (1862-1915). Изучая свойства «яичной воды», т. е. морской воды, в которой некоторое время находились неоплодотворенные яйца морского ежа Arbacia или полихеты Nereis, Лилли обнаружил, что из яиц выделяется вещество, которое обладает способностью склеивать спермин в комки. Наблюдаемая агглютинация оказалась видоспецифичной, и Лилли назвал фактор агглютинации, выделяемый неоплодотворенным яйцом, веществом оплодотворения, или фертилизином (от англ. fertilization - оплодотворение). Суть выдвинутой Лилли теории оплодотворения состоит в признании того, что в периферической области яйца находится фертилизин, который имеет сродство к поверхностным рецепторам спермия (антифертилизин спермия). Благодаря этому сродству фертилизин связывает, согласно Лилли, спермии. Однако, чтобы претендовать на универсальность и объяснить не только механизм соединения гамет, но и причины агглютинации спермиев, возможность предотвращения полиспермии, высокую специфичность процесса оплодотворения и т д., теория фертилизина нуждалась в многочисленных допущениях, под гнетом которых она в конце концов и угасла.

Уже в ходе ранних исследований оплодотворения возникло представление о гамонах - веществах, которые обеспечивают активацию или блокирование отдельных этапов оплодотворения. В соответствии с их происхождением различали гиногамоны, выделяемые яйцеклетками, и андрогамоны, вырабатываемые мужскими половыми клетками. Так, полагали, что гиногамон 1, диффундируя из яйца, активирует движение сперматозоида, преодолевая действие андрогамона 1, который ингибирует движение сперматозоида. Гиногамон 2 - синоним фертилизина, а андрогамон 2 - антифертилизина спермия.

В пятидесятые годы XX столетия идея о взаимодействии фертилизина с антифертилизином трансформировалась в гипотезу специфического фагоцитоза. Согласно этой концепции, наличие на поверхности яйца и спермия взаимодействующих молекул обеспечивает комплементарную реакцию по принципу застежки «молнии», благодаря которой спермий оказывается поглощенным яйцом.

Несмотря на известную умозрительность, эти и многие другие подобные гипотезы о механизмах взаимодействия сперматозоидов и яиц сыграли свою положительную роль, обнаружив, во-первых, существование целого семейства специфических молекул на поверхности взаимодействующих гамет и, во-вторых, положив начало планомерным исследованиям природы этих молекул.

Вторая половина прошлого столетия - период расцвета ультраструктурных и молекулярно-биологических исследований, которые выявили большое разнообразие конкретных форм клеточного взаимодействия при оплодотворении. Стало ясно, что универсальная теория оплодотворения, если и может существовать, то только как свод некоторых самых общих принципов организации этого процесса.

Конкретные механизмы оплодотворения зависят от множества факторов. Достаточно сказать о своеобразии оплодотворения у животных с наружным и внутренним осеменением. Очевидно, что определенные различия процесса оплодотворения обусловлены и тем, что у разных животных проникновение спермия в яйцо происходит на разных этапах оогенеза. У многих аннелид, моллюсков, нематод и ракообразных сперматозоид проникает в ооциты первого порядка на стадии профазы. У других кольчатых червей, моллюсков и у насекомых - на стадии метафазы первичного ооцита. Для многих позвоночных характерно осеменение на стадии метафазы вторичного ооцита. У некоторых кишечнополостных и у морских ежей оплодотворение происходит на стадии зрелого яйца уже после завершения делений созревания и выделения направительных, или редукционных телец. Наконец, нельзя не вспомнить и разнообразие типов сперматозоидов, среди которых имеются жгутиковые формы и спермин без жгутиков (например, амебоидные спермин нематод), с акросомой и без нее, имеющие акросомную нить и лишенные ее. Естественно, что в каждом таком случае конкретные механизмы, обеспечивающие тонкое взаимодействие между половыми клетками, различаются.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Механизмы оплодотворения

Процесс оплодотворения у животных можно разделить на три фазы. Первая фаза характеризуется сближением сперматозоида с яйцеклеткой до их контакта. В эту фазу осуществляются дистантные взаимодействия между половыми клетками. Вторая фаза начинается с того, что сперматозоид прикрепляется к поверхности яйцеклетки. В это время наблюдаются контактные взаимодействия между половыми клетками. Третья фаза процесса оплодотворения начинается после проникновения сперматозоида в яйцо и завершается объединением ядер мужской и женской половых клеток. Эта фаза характеризует взаимодействие внутри яйца.

Дистантные взаимодействия между половыми клетками

Дистантные взаимодействия обеспечиваются рядом неспецифических факторов, среди которых особое место принадлежит химическим веществам, которые вырабатываются половыми клетками. Известно, что половые клетки выделяют гамоны или гормоны гамет. Гамоны, которые вырабатываются яйцеклетками, называют гиногамонами, а спрематозоидами - андрогамонами. Женские половые клетки выделяют две группы гамонов: гиногамоны I и гиногамоны II, оказывающие влияние на физиологию мужских половых клеток. Сперматозоиды вырабатывают андрогамоны I и II.

Некоторые из этих химических веществ направлены на повышение вероятности встречи сперматозоида с яйцеклеткой. Известно, что движение сперматозоида к яйцу осуществляется через посредство хемотаксиса - движение сперматозоидов по градиенту концентрации некоторых химических веществ, выделяемых яйцеклеткой. Хемотаксис достоверно показан для многих групп животных, особенно беспозвоночных: моллюсков, иглокожих и полухордовых. Хемотактические факторы выделены из яйцеклеток морских ежей: у одних видов - это пептид, состоящий из десяти аминокислот, и назван сперактом, у других видов - пептид состоит из четырнадцати аминокислот и, получил название резакт. При добавлении экстрактов этих веществ в морскую воду, сперматозоиды соответствующего вида начинают двигаться вверх по градиенту их концентрации.

В движении сперматозоидов млекопитающих по верхним отделам яйцевода существенное значение имеет явление реотаксиса - способность двигаться против встречного течения жидкости яйцевода.

После того, как сперматозоид пройдет сквозь защитные оболочки яйца и вступит в контакт с его плазматической мембраной, начинаются контактные взаимодействия между половыми клетками, которые приведут к проникновению сперматозоида в цитоплазму яйца.

Контактные взаимодействия между половыми клетками

Контакт сперматозоида с мембраной яйцеклетки приводит к активации половых клеток. Реакция активации связана со сложными морфологическими, биохимическими и физико-химическими изменениями в половых клетках. Активация мужской половой клетки, в первую очередь связана с акросомной реакцией, а женской - с кортикальной реакцией.

Акросомная реакция характеризуется быстрыми изменениями в акросомном аппарате головки сперматозоида, сопровождающимися высвобождением заключенных в ней спермолизинов и выбрасыванием акросомной нити в сторону поверхности яйца.

Рассмотрим общую схему акросомной реакции у представителей разных групп морских беспозвоночных - иглокожих, кольчатых червей, двустворчатых моллюсков, кишечно-дышащих и др.

На вершине головки сперматозоида, плазматическая мембрана и, прилежащая к ней часть мембраны акросомного пузырька, растворяются (лизируются). Свободные края обеих мембран сливаются между собой в единую мембрану. Из обнажившейся акросомы выходят спермолизины в окружающую среду и приводят к растворению яйцевых оболочек в месте контакта со сперматозоидом. После этого внутренняя мембрана акросмного аппарата выпячивается наружу и образует вырост в виде трубочки (акросомная нить). Акросомная нить удлиняется, проходит через разрыхленную область дополнительных яйцевых оболочек и вступает в контакт, с плазматической мембраной яйцеклетки. В области контакта акросомной нити с поверхностью яйца плазматические мембраны сливаются и содержимое акросомной трубочки (нити) соединяется с цитоплазмой яйцеклетки. В результате слияния мембран образуется цитоплазматический мостик. Чуть позже по цитоплазматическому мостику в цитоплазму яйца перейдут ядро и центриоль сперматозоида. Акросомная реакция завершается встраиванием мембраны сперматозоида в мембрану яйцеклетки. С этого момента сперматозоид и яйцеклетка являются уже единой клеткой (Рис.7, 8, 9.).

Рис.7. Акросомная реакция сперматозоида: А - В - слияние наружной мембраны акросомы и мембранысперматозоида. Излияние содержимого акросомного пузырька; 1 - мембрана акросомы; 2 - мембрана сперматозоида; 3 - глобулярный актин; 4 - ферменты акросомы; Г - Д - полимеризация актина и образование акросомного выроста; 5 - биндин; 6 - вырост акросомы; 7 - актиновые микрофиломенты; 8 - ядро сперматозоида. (по Голиченкову)

При общем сходстве акросомной реакции, у этих животных между ними имеются и определенные различия. Так, у иглокожих в отличие у червей и моллюсков в акросомном аппарате не содержатся литические ферменты. У большинства изученных животных образуется одна акросомная нить, а у некоторых червей - несколько таких нитей.

Рис.8. Последовательность акросомной реакции у морского ежа. (по Голиченкову)

При оплодотворении у позвоночных животных также происходит акросомная реакция. У низших позвоночных (миноги, и осетровые рыбы), она во многом сходна с акрсомной реакцией спермиев беспозвоночных животных.

Рис.9. Схема процессов, происходящих при взаимодействии мембран яйцеклетки и сперматозоида в ходе оплодотворения (по Гилберт).

У акуловых рыб, рептилий и птиц, яйца которых одеты плотными оболочками, соединение гамет происходит раньше, чем эти оболочки сформируются. У этих животных акросома продолжает выполнять свою первоначальную роль и, хорошо развита.

Акросомная реакция у млекопитающих отличается от такой реакции у ьеспозвоночных и низших позвоночных. В спермии млекопитающих акросомная реакция протекает без образования акросомного выроста, Приблизившись к поверхности яйца, спермий сливается с его плазматической мембраной боковой поверхностью головки.

У насекомых и высших рыб соединение половых клеток происходит после того, как полностью образуются плотные дополнительные яйцевые оболочки. В этих случаях сперматозоид проникает в яйцо через микропиллярные каналы и соединение гамет происходит без участия акросомы.

Активация яйца. Кортикальная реакция. После того, как мужская половая клетка прикрепится к поверхности яйца и ее акросомная нить вступит в контакт с поверхностью ооплазмы, происходит активация яйцеклетки. Активация яйца связана со сложными изменениями самых разных сторон его деятельности. Наиболее ярким внешним проявлением активации являются изменения поверхностного слоя ооплазмы, получившие название кортикальной реакции (Рис. 10).


Рис.10. Кортикальная реакция в яйце морского ежа А-приближение спермия к яйцу; Б-Г-последовательные стадии кортикальной реакции; показаны волна выделения содержимого кортикальных гранул, распространяющаяся от места проникновения спермия, отделение оболочки и образование перивителлинового пространства, формирование гиалтнового слоя; гс-гиалиновый слой; жо-желточная о болочка кг-кортикальная гранула; оо-оболочка оплодотворения пм-плазматическая мембрана; пп-перивителлиновое пространство, заполненное перивителлиновой жидкостью (по Гинзбург).

Рассмотрим последовательные стадии кортикальной реакции на примере наиболее полно, изученных яйцеклеток морского ежа. Кортикальная реакция начинается с того, что мембрана, ограничивающая каждую кортикальную гранулу, слипается с плазматической мембраной яйца. В этом месте гранулы открываются, и их содержимое изливается в желточную оболочку. Процесс секреции содержимого кортикальных гранул начинается от места прикрепления сперматозоида и волнообразно распространяется во все стороны до тех пор, пока не охватит всю поверхность яйца. Часть выделенного содержимого кортикальных гранул оводняется и растворяется, образуя перивителлиновую жидкость, которая оттесняет желточную оболочку от плазмолеммы яйца, приводя к увеличению объема перивителлинового пространства. Другая часть содержимого кортикальных гранул сливается с желточной оболочкой, которая при этом утолщается и преобразуется в оболочку оплодотворения. Часть кортикальных гранул, не участвующих в образовании оболочки оплодотворения, превращаются в плотный слой, называемый гиалиновым слоем, расположенным над плазматической мембраной. После того, как сформируется оболочка оплодотворения, другие сперматозоиды лишаются возможности проникнуть в ооплазму яйца.

В последние годы был изучен химический состав содержимого кортикальных гранул. Показано, что содержимое кортикальных гранул содержит следующие вещества: а) протеолитический фермент (актеллиновая деламиназа), разрывающий связи между клеточной оболочкой и плазматической мембраной яйца; б) протеолетический фермент (сперм-рецепторная гидролаза), который освобождает осевшую на желточной оболочке сперму; в) гликопротеид, втягивающий воду в пространство между желточной оболочкой и плазматической мембраной, вызывая их расслоение; г) фактор, способствующий образованию оболочки оплодотворения; д) структурный белок гиалин, участвующий в образовании гиалинового слоя.

Каково биологическое значение кортикальной реакции?

Во-первых, кортикальная реакция является тем механизмом, который защищает яйцо от проникновения сверхчисленных сперматозоидов.

Во-вторых, образующаяся в результате кортикальной реакции перивителлиновая жидкость, служит специфической средой, в которой протекает развитие зародыша.

При активации яйца наблюдаются и другие изменения самых разных сторон его деятельности.

Во-первых, снижается тормоз, который блокировал мейоз и, ядерные преобразования продолжаются с той самой стадии, на которой они остановились к моменту выхода яйца из яичника.

Во-вторых, наблюдается серия биохимических изменений, сопровождаемых усилением углеводного обмена, повышением синтеза липидов и белков.

В-третьих, резко возрастает проницаемость клеточной мембраны для ионов натрия и калия.

События, происходящие в яйце после проникновения сперматозоида

После того, как плазматическая мембрана акросомной нити спермия сливается с плазматической мембраной яйца, спермий утрачивает свою подвижность и его вовлечение внутрь яйца происходит благодаря действию сил, исходящих из активированного яйца. Обычно сперматозоид втягивается в ооплазму вместе с хвостом, но иногда хвостовой отдел отбрасывается. Однако и в тех случаях, когда жгутик проникает в яйцо, он отбрасывается и рассасывается.

Высоко-конденсированное ядро сперматозоида начинает набухать, хроматин разрыхляется и ядро превращается в своеобразную структуру, называемым мужским пронуклеусом.

Аналогичные изменения происходят и в ядре яйцеклетки, в результате чего образуется женский пронуклеус. В период формирования пронуклеусов, вдоль хромосом происходит репликация ДНК. В дальнейшем пронуклеусы начинают перемещаться к центру яйцеклетки. Ядерные оболочки, окружающие каждого из пронуклеусов разрушаются, пронуклеусы сближаются и происходит кариогамия. Кариогамия - это последняя стадия оплодотворения. При объединении пронуклеусов образуется ядро с диплоидным набором хромосом. Затем хромосомы занимают экваториальное положение, и наступает первое деление зиготы.

Ооплазматическая сегрегация. После проникновения сперматозоида начинаются интенсивные перемещения цитоплазмы яйцеклетки (ооплазмы). При этом происходит расслоение, отмешивание различных составных частей ооплазмы, что обозначается как ооплазматическая сегрегация. В ходе этого процесса намечаются основные элементы пространственной организации зародыша. Поэтому данный этап развития называют также проморфогенезом: имеется в виду, что в это время как бы расставляются вехи для будущих морфогенетических процессов.

Моно- и полиспермия

Проникновение в яйцеклетку одного сперматозоида, получило название, физиологической моноспермии. Моноспермия присуща всем группам животных с наружным осеменением и многим животным с внутренним осеменением (тем, которые подобно, млекопитающим имеют яйцеклетки небольшого размера).

У других животных, например, у некоторых членистоногих (насекомые), моллюсков (класс брюхоногих), хордовых (акулообразные рыбы, хвостатые амфибии, рептилии и птицы) в яйцеклетку проникает большое количество сперматозоидов. Такое явление получило название физиологической полиспермии. Однако и в этом случае с ядром яйцеклетки соединяется только ядро одного сперматозоида, тогда как остальные разрушаются (рис.11).

Рис. 11. Полиспермия у тритона. А-проникновение спермиев в яйцо на стадии метафазы II деления созревания; Б-синхронные изменения семенных ядер, образование семенных звезд; В-женское ядро соединяется с одним из семенных ядер; Г - Е-синкарион вступает в митоз, сверхчисленные семенные ядра оттесняются в вегетативное полушарие и дегенерируют. Цифры над изображением яиц - время после проникновения спермиев при температуре 23 о (по Гинзбург).

При физиологической моноспермии имеются особые механизмы защиты яйца от полиспермии. Первый механизм связан с изменением мембранного потенциала. Установлено, что в яйцеклетке лягушки, через несколько секунд, после контакта со сперматозоидом заряд мембраны изменяется от -28 до 8 мв и остается положительным в течение 20 мин. Такие же изменения мембранного потенциала были обнаружены в яйцеклетках морского ежа. Оказалось, что положительный заряд мембраны препятствует полиспермии. Другой широко распространенный механизм защиты яйца от проникновения сверхчисленных сперматозоидов связан с образованием оболочки оплодотворения и перивителлиновой жидкости.

Сложный процесс, при котором сперматозоид взаимодействует с гомологичным ооцитом, в результате чего образуется новый организм. Соединение двух гамет у млекопитающих начинается с их перемещения по репродуктивным трактам мужского и женского организмов, продолжающегося до тех пор, пока они не встретятся в женских репродуктивных путях. Последующее взаимодействие между двумя гаметами происходит в несколько этапов, завершающихся их слиянием с образованием зиготы:

Связывание сперматозоида с оболочкой ооцита;
активация ооцита;
образование мужского и женского пронуклеусов;
инициация деления клетки и раннего эмбрионального развития.

В последние 20 лет были предприняты значительные усилия , направленные на идентификацию молекул и сигнальных путей, имеющих отношение к взаимодействию гамет. Взаимодействие и информационный обмен между двумя совершенно чужими клетками осуществляются при помощи множества биологических, физиологических и генетических факторов. Большинство наших знаний о взаимодействии половых клеток получено у животных, базируются они преимущественно на данных, полученных на мышиной модели. Хотя многие молекулы, вовлеченные в процесс оплодотворения, идентифицированные на мышиной модели, сохранились в процессе эволюции и у человека, вопрос о возможности экстраполяции этих данных на человека остается спорным.

Основным экспериментальным методом , используемым для изучения клеточных и молекулярных механизмов взаимодействия сперматозоида и ооцита, служит ЭКО. Теперь, когда ЭКО стало рутинной процедурой (как в отношении лабораторных животных, так и для людей), были выявлены многие ключевые факторы, необходимые для оплодотворения.

В дальнейших статьях на нашем сайте суммированы современные знания о молекулярных и клеточных механизмах оплодотворения , сфокусировано внимание на сегодняшнем понимании клеточных биологических процессов и молекулярных событий, имеющих отношение к имплантации эмбриона, и их прикладное значение для клинической репродуктивной медицины.

История изучения оплодотворения

До того, как в XVII в. зародилась современная биология репродукции и развития , наиболее распространенным было учение о «семенах» плюралистического течения пифагорейской школы, представителями которого были Анаксагор из Клазомен и Эмпедокл из Акрагаса (V в. до н.э.). С точки зрения репродукции человека, термин «плюрализм» означает, что плод происходит от двух родительских «семян». Гиппократ (около 460-370 гг. до н.э.) утверждал, что «семена» вырабатываются всеми частями организма, и каждое «семя» содержит как мужское, так и женское начало; при зачатии потомству передаются части тела, напоминающие того или иного родителя.

Век спустя Аристотель (384-322 гг. до н.э.) подверг критике теорию Гиппократа. Согласно воззрениям Аристотеля, вклад в развитие плода вносит только мужское семя, роль же женщины сводится к обеспечению плода менструальной кровью. Он же заметил, что иногда дети больше напоминают своих дедушек и бабушек, нежели родителей. То, что «семена» тканей и крови могут никак не проявиться у детей, а проявляются только у внуков, с трудом поддавалось объяснению. Аристотель предположил, что мужское семя представляет собой смесь ингредиентов, иногда составленную несовершенно, из-за чего материал предыдущих поколений может проходить незамеченным. Большинство своих идей Аристотель представил в трактате «О происхождении животных».

Это была одна из первых законченных работ по эмбриологии . Более того, Аристотель впервые применил в своем трактате иллюстрации, позволявшие лучше понять его идеи.

Гален (130-201 гг. до н.э.), считающийся величайшим греческим врачом после Гиппократа и основателем экспериментальной физиологии, разделял взгляды Гиппократа на совместный вклад мужских и женских «семян» в репродукцию, но считал, что каждое из них содержит только один элемент. В XVII веке несколько выдающихся открытий дали толчок новым научным направлениям репродуктивной биологии. Уильям Харви (1578-1657) впервые предположил, что человек и другие млекопитающие размножаются посредством оплодотворения ооцита спермой.

Однако основателем современной репродуктивной биологии многие авторы считают Ренье де Граафа (1641-1673). Именно де Грааф в 1672 г. установил, что источником яйцеклеток служат тестикулы женщин, которые теперь мы называем яичниками. Через 5 лет студент-медик Иоганн Хэм впервые увидел под микроскопом в семенной жидкости сперматозоиды, о чем сообщил Антони ван Левенгуку. Он назвал их «анималькулами» и предположил, что они появляются в процессе разложения семенной жидкости.

Левенгук (1632-1723) был первым ученым, сделавшим подробное описание сперматозоидов как составного компонента спермы. Он также предположил, что оплодотворение происходит при проникновении сперматозоида в яйцеклетку, но наблюдать этот процесс ученые не могли в течение последующего столетия из-за низкого качества имеющихся в то время микроскопов.

Другое революционное для научного мышления открытие было сделано итальянским священником и физиологом Ладзаро Спалланцани в 1779 г. До этого времени знания о размножении основывались на примере растений. Считали, что эмбрион - «производное мужского семени, взращенного на женской почве». В своих опытах Спалланцани впервые доказал, что для развития эмбриона необходим истинный физический контакт между яйцеклеткой и спермой. Спалланцани провел серию успешных инсеминаций лягушек, рыб и собак.

Первое успешное искусственное оплодотворение женщины было произведено через 11 лет после опытов Спалланцани. В 1790 г. известный шотландский анатом и хирург доктор Джон Хантер сообщил об успешной инсеминации жены одного мануфактурного торговца спермой мужа. Все эти открытия привели к созданию современных репродуктивных технологий, благодаря которым 25 июля 1978 г. произошло рождение первого ребенка, зачатого с помощью ЭКО (метод разработан Эдвардсом и Стептоу).